1.146 Surface ozone variability in continental South Africa.

Presenting Author:

Pieter Gideon van Zyl, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa, pieter.vanzyl@nwu.ac.za

Co-Authors:

Tracey Leah Laban, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa

Johan Paul Beukes, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa

Ville Vakkari, Finnish Meteorological Institute, Helsinki, Finland

Kerneels Jaars, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa

Nadine Borduas-Dedekind, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland

Miroslav Josipovic, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa

Anne Mee Thompson, NASA/Goddard Space Flight Center, Greenbelt, Maryland, USA

Markku Kulmala, Department of Physics, University of Helsinki, Finland Lauri Laakso, Finnish Meteorological Institute, Helsinki, Finland

Abstract:

Although elevated surface ozone (O_3) concentrations are observed in many areas within southern Africa, few studies have investigated the regional atmospheric chemistry and dominant atmospheric processes driving surface O₃ formation in this region. Therefore an assessment of comprehensive continuous surface O3 measurements performed at four sites in continental South Africa was conducted. The regional O₃ problem was evident with O_3 concentrations regularly being higher than 40 ppb, while O_3 levels were higher compared to other background sites in the Southern Hemisphere. The temporal O₃ patterns observed at the four sites resembled typical trends for O3 in continental South Africa with O₃ concentration peaking in late winter and early spring. Increased O₃ concentrations in winter were indicative of increased emissions of O₃ precursors from household combustion and other low-level sources, while a spring maximum observed at all the sites was attributed to increased regional biomass burning. Source area maps of O₃ and CO indicated significantly higher O3 and CO concentrations associated with air masses passing over a region with increased seasonal open biomass burning, which indicated CO associated with open biomass burning as a major source of O₃ in continental South Africa. The relationship between O_3 , NO_x and CO indicated a strong dependence of O₃ on CO, while O₃ levels remained relatively constant or decreased with increasing NO_x . The instantaneous production rate of O_3 calculated at Welgegund indicated that ~40% of O_3 production occurred in the VOC-limited regime. These relationships between O₃ and precursor species indicated that continental South Africa can be considered VOC-limited, which can be attributed to high anthropogenic emissions

of NO_X in the interior of South Africa. The study indicated that the most effective emission control strategy to reduce O_3 levels in continental South Africa should be CO reduction associated with household combustion and regional open biomass burning.